Application of kernel k-means and kernel x-means clustering to obtain soil classes from cone penetration test data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Kernel Clustering: Approximate Kernel k-means

Kernel-based clustering algorithms have the ability to capture the non-linear structure in real world data. Among various kernel-based clustering algorithms, kernel k -means has gained popularity due to its simple iterative nature and ease of implementation. However, its run-time complexity and memory footprint increase quadratically in terms of the size of the data set, and hence, large data s...

متن کامل

Consensus Kernel K-Means Clustering for Incomplete Multiview Data

Multiview clustering aims to improve clustering performance through optimal integration of information from multiple views. Though demonstrating promising performance in various applications, existing multiview clustering algorithms cannot effectively handle the view's incompleteness. Recently, one pioneering work was proposed that handled this issue by integrating multiview clustering and impu...

متن کامل

Localized Data Fusion for Kernel k-Means Clustering with Application to Cancer Biology

In many modern applications from, for example, bioinformatics and computer vision, samples have multiple feature representations coming from different data sources. Multiview learning algorithms try to exploit all these available information to obtain a better learner in such scenarios. In this paper, we propose a novel multiple kernel learning algorithm that extends kernel k-means clustering t...

متن کامل

On Potts Model Clustering, Kernel K-means, and Density Estimation

Many clustering methods, such as K-means, kernel K-means, and MNcut clustering, follow the same recipe: (1) choose a measure of similarity between observations; (ii) define a figure of merit assigning a large value to partitions of the data that put similar observations in the same cluster; (iii) optimize this figure of merit over partitions. Potts model clustering, introduced by Blatt, Wiseman...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soils and Rocks

سال: 2020

ISSN: 1980-9743,1980-9743

DOI: 10.28927/sr.434607